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VectorDB is widely used in the LLM applications, and the 
apps are highly dependent on the performance, reliability, 

security and scalability of VectorDB



A typical pipeline of LLM application in the Telecommunication Field 
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Details on this application

ØPain Point：LLM is not sensitive to the meaning of numeric data, and the conclusion is not trustworthy. For serious 

questions in the telecommunication field, LLM may produce nonsense words (even if they seem to be logical).

ØData Source： The source documents of telecommunication knowledges come from real product, including the product 

document, maintanence cases, external papers&journals

ØRAG：users query the knowledge database by natural language, then the related knowledges are fed into LLM by prompt, 

and the LLM generate logical, smooth, correct and helpful answers.
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Vector Database Requirements

#rows>100,000,000
recall>95%
Latency < 100ms
Metric: Cosine/L2

#rows>100,000,000
Score: BM25
Latency<500ms

#rows>100,000,000
recall>95%
Latency < 100ms
Filter Selectivity: 0-1

#rows>100,000,000
Latency < 400ms

Data preparation?

Allowing to create 
dictionary in the database



Applications with vector databases deployed on the cloud
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Voice Assistant
• Millions of data
• accurate search(Top5)
• multiple tasks, different requirements
• heterogeneous inputs/outputs

• Public service on cloud, privacy matters a lot
• High concurrency, high throughput is required
• Complicated questions, decomposition is required
• Relies on Time-to-live to manage the cache



Applications with vector databases deployed on the cloud
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Voice Assistant
• Light-weighted index
• Fast I/O, Computing
• Disaggregation
• Resource Scheduling/Scaling

• Privacy protection
• Multi-tenant/Multi-read
• Query in batch
• Updatable



An algorithm view of vector similarity search
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Algorithm optimization for approximate nearest neighbors 

Brute-force KNN takes over 2 
minutes for 100 million vectors.

1. The recall is not necessarily 100%, the 
second nearest neighbor maybe better 
because of the limitation of embedding 
methods. 

2. Nearest neighbors have locality naturally, 
if close, continue to search; otherwise, 
jump out.



Graph-based Algorithms

KGraph NSW HNSW Vamana NSG
Global Connectivity Middle Middle Middle Good Good

Search Complexity
(in memory, experimental)

� (|� |^0.54) � (log^2(|�
|))

� (log(|� |)) � (|� |^0.75) � (log(|� |))

Space Consumption Middle Middle Middle Good Good

Construction Complexity
(in memory, experimental)

� (|� |^1.14) � (|�
|·log^2 (|�

|))

� (|� |·log(|�
|))

� (|� |^1.16) � (|� |^((1+
� )/ � ·log(|
� |) + |�

|^1.14)A Comprehensive Survey and Experimental Comparison of Graph-Based Approximate Nearest Neighbor Search.
Mengzhao Wang, Xiaoliang Xu, Qiang Yue, Yuxiang Wang. VLDB, 2021



DiskANN shows the best #hops when searching

DiskANN: Fast Accurate Billion-point Nearest Neighbor Search on a Single Node.
Suhas Jayaram Subramanya, Devvrit, Rohan Kadekodi, Ravishankar Krishaswamy, Harsha Vardhan Simhadri. NIPS, 2019

Average number of hops vs maximum graph degree 
for achieving 98% 5-recall@5 on ANN_SIFT1M



Multi-column scalar/vector hybrid index, support attribute filtering
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Background：Vector is suitable for semantic search, 
scalar attribute is also important for access control, 
accuracy improve, and performance improve.
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Scalar-vector hybrid query is supported by following 3 
mainstream methods:

1. Prior Filtering. Sequence scan on selected vector is very slow. We 
can build index for each scalar label, but too many small index 
causes the range scan/ Full scan slow.

2. Post Filtering. Efficient when the selectivity of scalar condition is 
high. When the selectivity is low, the query will extend the 
candidate list constantly for enough result.

3. Hybrid Filtering. Consider scalar label when computing vector 
distances to find tuples whose vector is close to the query vector, 
and scalar matches the query condition. However, this method is 
not accurate enough.

1. Full scan can be executed in the root node0, which has 
the same performance with the full graph;

2. Query with equal condition can search on the leaf node 
with higher performance;

3. Query with range condition can search on a small part of 
nodes for better performance



ColBERT: Efficient and Effective Passage Search via Contextualized Late Interaction 
over BERT

BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings 
Through Self-Knowledge Distillation

Light-weighted multi-vector similarity query for ranking
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A system view of vector database
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VS VS
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• Column-level, user-side key, driver 
embedded

• APP is not aware of encryption, 
support encrypted equal conditions.

• DB cannot decrypt data, avoid data 
leaking during OM activities.

• column-level，user-side key，server-side 
encryption

• APP knows encryption, not support 
encrypted condition

• Data is decrypted in session, database 
cannot decrypted automatically, avoid 
data being stolen by other users.

• Table-level, server-side key, server-
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• APP is not aware of encryption, 
plaintext in the memory.

• Prevent data from being stolen on 
the disk.
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High availability by data replication

XLOG Types XLOG Description
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Failure Recovery

1. Customizes xlog collections for vector index, supports synchronize 
between primary node and standby nodes；

2. Supports fast RTO < 10s for service recovery;

3. Supports data recovery, users can recover the data to any version when 
misoperation or disk damage happen (PITR).



Thanks!


