
GaussDB-Vector: A Large-Scale Persistent Real-Time Vector
Database for LLM Applications

Ji Sun
Tsinghua University

sunji@tsinghua.edu.cn

Guoliang Li
Tsinghua University

liguoliang@tsinghua.edu.cn

James Pan
Tsinghua University

jamesjpan@tsinghua.edu.cn

Jiang Wang
Huawei

wangjiang16@huawei.com

Yongqing Xie
Huawei

xieyongqing1@huawei.com

Ruicheng Liu
Huawei

liuruicheng1@huawei.com

Wen Nie
Huawei

niewen2@huawei.com

ABSTRACT
Vector databases are widely used as a fundamental tool for address-
ing the weaknesses of large language model (LLM) applications,
specifically hallucinations and the high cost of inference. However,
existing vector databases either cater to niche applications with low-
latency in-memory search, or offer sophisticated data management
capabilities but at the cost of low performance.

To address these limitations, we propose GaussDB-Vector, a
high-performance, real-time persistent vector database that excels
in low-latency scalable search, real-time inserts and deletes, high
availability, large-scale distributed search, and hybrid scalar-vector
filtered search capabilities. These features are primarily achieved
through an innovative storage architecture designed for a graph-
based vector index, optimized for I/O operations and adaptable
across various dataset sizes and dimensions, complemented by
novel buffering strategies to further reduce I/O burdens. GaussDB-
Vector supports product quantization, parallel search, and hard-
ware acceleration via SIMD, GPUs, and NPUs in order to further ac-
celerate queries. Experimental results show that GaussDB-Vector
outperforms competitive baselines by a factor of 1 to 5 times.

PVLDB Reference Format:
Ji Sun, Guoliang Li, James Pan, Jiang Wang, Yongqing Xie, Ruicheng Liu,
and Wen Nie. GaussDB-Vector: A Large-Scale Persistent Real-Time Vector
Database for LLM Applications. PVLDB, 18(12): XXX-XXX, 2025.
doi:XX.XX/XXX.XX

1 INTRODUCTION
Large language models (LLM) are the foundation for modern AI
applications. For example, intelligent Q&A systems such as Chat-
GPT use LLMs to generate answers according to user prompts, and
intelligent agents use LLMs to generate actions that can be taken
to accomplish certain tasks. But LLM-based tools face two main
challenges, hallucinations and expensive inference cost. To address

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.
doi:XX.XX/XXX.XX

these challenges, a popular approach is to use a vector database to
serve as "long-term memory". For example, retrieval-augmented
generation (RAG) [26] can reduce hallucinations by using a vec-
tor database populated with knowledge embeddings to make LLM
answers more controllable and explainable. To reduce inference
cost, semantic memory [12, 16] caches various stages of inference
in embedding form inside a vector database to be retrieved later
for future queries without invoking the LLM. To support these use
cases, the vector database must efficiently store and search up to
billions of embeddings while supporting features like frequent up-
dates, high user concurrency, distributed search, high availability,
user isolation, and hybrid scalar-vector filtered search.

This need for a high-performance feature-rich vector database
has led to a number of commercial vector database systems, such
as Milvus [35], PGVector[6] and ElasticSearch[2]. Milvus is de-
signed for large-scale web applications. Data is organized inside
segments of an LSM tree [30], and a search index is built for each
segment. Milvus can persist segments onto the file system and load
them into memory during search. However, Milvus suffers from
(1) high query latency as it must search every segment and then
merge the results; (2) expensive updates due to index rebuild when
merging and splitting segments; (3) slow attribute filtering because
it only supports pre-filtering (first predicates then vectors); (4) low
data freshness as new data is not inserted into indexes immediately.
On the other hand, ElasticSearch is designed for text searching,
and it integrates vector search ability to support semantic search.
Similar to Milvus, ElasticSearch also caches inserted data into
in-memory segments, storing data onto disk when the size of a
segment exceeds a threshold. Data on disk is also organized into
segments, leading to similar drawbacks. PGVector is a vector exten-
sion built on PostgreSQL. Similar vector engines include AlloyDB
(Google) and PASE [37] (Alibaba). PGVector supports IVFFLAT[3]
and HNSW [28], and it works by building index structures over data
pages in PostgreSQL. However, it also has drawbacks: (1) HNSW
consumes more I/Os for search on disk-based systems, and its per-
formance is worse than algorithms like NSG [21] and DiskANN [32];
(2) only single-machine search is supported, making it unable to
scale to datasets with billions of vectors.

To address these limitations, we propose a persistent real-time
vector database system GaussDB-Vector for LLM applications,

https://doi.org/XX.XX/XXX.XX
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

which is competitive in terms of high performance, high avail-
ability, high scalability, and zero-delay data freshness, along with
hybrid scalar-vector (attribute filter + vector) search capability.
High Performance. GaussDB-Vector has extremely low latency
(< 50 ms) and high recall (> 95%) for datasets with over 1 billion
vectors on a single machine, and can scale to tens of billions of
vectors on multiple machines with high throughput of over 100,000
QPS. GaussDB-Vector also supports high performance vector up-
dates. To reduce I/O cost of graph-based search, GaussDB-Vector
uses an approximate nearest neighbor (ANN) index based on Va-
mana (DiskANN) which reduces the radius of ANN search by con-
trolling the out-degrees of each vector while using a soft edge-
pruning method to retain shortcuts. To speed up index construc-
tion, GaussDB-Vector introduces a new edge pruning heuristic that
reduces the complexity of neighborhood construction without sacri-
ficing search quality. From a systems perspective, GaussDB-Vector
also extends DiskANN to support tailored storage structures that
optimize I/O efficiency over datasets with different sizes and dimen-
sionalities, in addition to introducing a novel buffering strategy
based on hot nodes to further relieve I/O pressure. For updates,
GaussDB-Vector designs an asynchronous deletion mechanism to
reduce deletion latency. GaussDB-Vector supports product quanti-
zation [24] (PQ), multi-threaded parallel computing, and hardware
acceleration via SIMD, GPUs, and NPUs to accelerate queries.
High Availability. GaussDB-Vector adds new log types for op-
erations on vectors, and GaussDB-Vector uses data replicas and
primary node selection techniques to guarantee the consistency of
data and availability of the service.
High Scalability. GaussDB-Vector can support tens of billions
of vector data by using only 10 commodity machines, and it can
guarantee the performance due to sophisticated query routing.
GaussDB-Vector also designs a vector data sharding strategy along
with drift detection and automatic redistribution mechanisms to
maintain the performance of distributed queries.
Data Freshness. GaussDB-Vector guarantees zero-delay data fresh-
ness. In GaussDB-Vector, newly inserted vectors are visible imme-
diately upon commit because it supports incremental index updates
on disk. The transactional management engine in GaussDB-Vector
also guarantees ACID transactions.
Hybrid Search. GaussDB-Vector supports efficient scalar-vector
hybrid search, regardless of the scalar condition and selectivity. We
design a novel hybrid index for hybrid search, and the evaluations
show that GaussDB-Vector outperforms baselines by 70%-300%.

In summary, we make the following contributions.
(1)We propose a novel vector database architecture GaussDB-Vector
to support semantic retrieval (Section 2).
(2) We propose real-time index update algorithms to enhance data
freshness, introduce hot node buffering to speed up search, design
graph index pruning algorithms to improve insertion performance,
and optimize indexes to reduce storage space and memory access
costs (Section 3).
(3) We propose a novel hybrid search method to support scalar-
vector hybrid search. We design a balanced tree structure to support
efficient hybrid queries, and propose cardinality-based sub-index
selection algorithms to improve the stability of query and update
latency across different scalar selectivity rates (Section 4).

Data Node

Vector Interface

Computation Accelerator IO Accelerator

Float Parallel

Vector Parallel

Tensor Parallel

Thread Parallel

Local Cache

Global Cache Distributed Stor

Multi-queue IO

Operators Storage Management

L2 Similarity Cos Similarity Ham Similarity

Clustering Quantization Inner Product

PQ caching Edge Pruning

Continuous
Placement

Vector
Clustering

Page
Management

Distributed
Sharding

Type

FloatVector

BoolVector SparseVector

IndexScan IndexSort IndexInsert

IndexBuild DataLoad IndexDelete

HybridSearch

HybridBuild

Coordinate Node

Optimizer Data Routing Query Routing
Cluster Management Global Transaction

Management

Programming Interface

Python Java C/C++ GoSQL

Figure 1: Architecture of GaussDB-Vector

(4) We design vector sharding and query scheduling techniques
for distributed GaussDB-Vector that can support tens of billions of
vectors (Section 5) and propose hardware acceleration techniques
for GPU, NPU and SIMD (Section 6). The proposed method simul-
taneously supports sharding of both scalar and vector data, enables
query scheduling that takes into account data distribution, and
allows for online fine-tuning of data distribution to maintain query
performance and accuracy.
(5) We conduct thorough experiments on datasets with varying
sizes and dimensions and show the superiority of GaussDB-Vector
over baselines (Section 7).

2 SYSTEM OVERVIEW
2.1 Architecture
To achieve high performance, high availability, high scalability, and
data freshness, GaussDB-Vector is designed as a two-tiered struc-
tured distributed database, as shown in Figure 1. Coordinate nodes
(CNs) are responsible for accepting client connections via the pro-
gramming interface, parsing SQL, and planning the execution path.
Data nodes (DNs) are responsible for plan execution, including
operator execution and data manipulation, and contain modules for
storage management and hardware-accelerated execution. Aside
from these nodes, a cluster manager orchestrates execution over
database clusters, and a global transaction manager keeps track
of global transaction IDs for distributed transactions. The CN-DN
design can facilitate load balancing, parallel vector search, and high
scalability. This architecture is capable of supporting large-scale
cloud-based applications with billions of connections. Specifically,
GaussDB-Vector serves as the backend vector search database for
XiaoYi Search, a cloud service providing intelligent assistant fea-
tures on Huawei mobile phones (similar to Siri on the iPhone).
Additionally, GaussDB-Vector supports trillions of code genera-
tion queries within Huawei’s internal R&D Support System.
Programming Interface. GaussDB-Vector inherits the advan-
tages of SQL for relational databases, and thus can process complex

queries, including hybrid search and nested queries. We integrate
new vector types into SQL and expose vector manipulation com-
mands for ease of use. For example, users can create a table with
both vector and ordinary data by using CREATE TABLE; build a vec-
tor index by using CREATE INDEX; and conduct a top-𝑘 search using
SELECT· · · ORDER BY· · · LIMIT K. With the help of the SQL en-
gine, GaussDB-Vector is able to apply rewrite rules and cost-based
optimization to accelerate query processing. For example, the opti-
mizer selects sequence scan if the selectivity of a predicate is large;
otherwise index scan is used. On top of the standard SQL inter-
face, GaussDB-Vector also supports SDKs for other programming
languages that can be used to develop database clients.
Storage Management. In order to reduce data fragmentation and
increase the efficiency of concurrent I/O, GaussDB-Vector adopts
page-based storage management. Vector data is a special type of
fixed length array, and it is stored in a row-based storage format
with other relational columns. GaussDB-Vector supports building
vector indexes to reduce the vector search I/O cost. Each vector
index is a structured file containing vector IDs and their locations
in the data files. The index can be organized as an inverted list
or a graph. In order to reduce the number of random page visits,
GaussDB-Vector clusters closest vectors into physically contiguous
data blocks. Moreover, the logical structures of the vector indexes
are designed to reduce I/O and improve cache locality of hot data.
GaussDB-Vector supports data sharding according to both the
scalar column and the vector column to support high scalability on
large-scale datasets. For graph-based indexes, GaussDB-Vector also
optimizes the edge pruning algorithm to reduce index construction
time. The details of ANN indexing are described in Section 3.
Hardware Acceleration. Vector search queries depend on many
compute-bound operators, including clustering, quantization, simi-
larity computations, etc. GaussDB-Vector optimizes these imple-
mentation for machines with Ascend/Kunpeng CPUs. On Kunpeng
CPUs, parallel float instructions can be carried out using SIMD
capability, where multiple float numbers are calculated in one in-
struction cycle. Kunpeng CPUs have more cores than other CPUs
of the same grade, and thus thread parallelism is a vital approach to
reducing latency of vector queries. GaussDB-Vector also supports
parallel vector index construction and search, and selects the de-
gree of parallelism and balances the load automatically. On Ascend
NPUs, GaussDB-Vector supports batching vectors into matrices,
synchronizing data in a unified memory space between the CPU
and NPU to accelerate computations using NPU tensor cores.

2.2 SQL Interface
GaussDB-Vector extends SQL to support vector search. Below, we
present some typical usage examples.
Data Definition Language (DDL). The DDL can be used to define
vector table schemas and build indexes on vectors and scalars. As
vector index construction can take several hours for trillions of data
items, users can add the CONCURRENTLY keyword to avoid blocking
other business applications, which builds the index using a data
snapshot and then incrementally updates it based on the delta data.
Data Manipulation Language (DML). The DML can be used
for querying and manipulating vector data. Users can orchestrate
different operations using standard SQL. For simplicity, we use

<cos>,<euc> and <ham> to denote operators of Cosine distance,
Euclidean distance and Hamming distance respectively.

1 -- DDL: create a vector table
2 CREATE TABLE [schema_name.]vectortab
3 (id int, vec floatvector(128), doc text)
4 WITH (ORIENTATION={ROW|COL})
5 [PARTITION BY {
6 {RANGE (partition_key)} |
7 {RANGE (partition_key)} |
8 {LIST|HASH (partition_key)}];
9 -- create a vector index
10 CREATE INDEX [CONCURRENTLY][IF NOT EXISTS]
11 [[schema_name.]vectoridx]
12 ON table_name [USING {IVF|VAMANA}]
13 ({{column_name {L2|Cosine|IP|Hamming}}
14 [LOCAL]
15 [WITH ({storage_parameter=value} [, ...])]
16 [{VISIBLE|INVISIBLE}]
17 [WHERE predicate];
18 -- alter parameters of index
19 ALTER INDEX vectoridx
20 SET(storage_parameter=value);
21 -- rebuild the index
22 REINDEX [CONCURRENTLY] vectoridx;

1 -- DML: copy vector data from csv file
2 COPY t1 FROM 'floatvector.csv' CSV HEADER;
3 -- insert vector into table
4 INSERT INTO t1 VALUES
5 (9711839, '[30,12,12,25]');
6 -- update vector data
7 UPDATE t1
8 SET repr = '[30,12,12,25]'
9 WHERE id = 1;
10 -- top-k search (Cosine)
11 SELECT id, repr <cos> '[1,1,3,2]' as s
12 FROM t1 ORDER BY s LIMIT 2;
13 -- range search (Cosine)
14 SELECT id, repr <cos> '[1,1,3,2]' as s
15 FROM t1 WHERE s < 0.8;
16 -- delete vector from table
17 DELETE FROM t1 WHERE id = 1;

3 VECTOR INDEXING
Vector indexing reorganizes vector data into index files in order to
accelerate ANN search, and it is the core part of a vector database.
Various ANN indexing algorithms have been proposed, and they
can be classified as IVF-based methods [19], hashing-based meth-
ods [18], graph-based methods [10, 11, 13, 36] and quantization-
based methods [20, 24, 25]. IVF-based methods and graph-based
methods can shape the index according to the data distribution
and have better accuracy on top-k search, thus GaussDB-Vector
focuses on IVF and Vamana graph [32] as basic algorithms for ANN
indexing. Based on these two algorithms, GaussDB-Vector adopts
product quantization to further accelerate the search, and it also
supports real-time updates.

IVF ANN Index

MetaPage 1st Layer Cluster Page

2nd Layer Cluster Page 2nd Layer Cluster Page

PQ Table Clustering Data Page

Clustering Data Page Clustering Data Page

nclus nclus2

is_compress

centroids 2nd_start

Ntuple NIdx centroids 2nd_start

centroids data_start data_insert

centroids data_start data_insert

centroids data_start data_insert

centroids data_start data_insert

dis_11 dis_12 dis_13 dis_14

dis_21 dis_22 dis_23 dis_24

Vec/pq Ctid Vec/pq Ctid

Vec/pq Ctid Vec/pq Ctid

Vec/pq Ctid Vec/pq Ctid

Vec/pq Ctid Vec/pq Ctid

Vec/pq Ctid Vec/pq Ctid

Vec/pq Ctid Vec/pq Ctid

is_pq

Code1 Code2

Figure 2: Structure of IVF Index

3.1 IVF-based Index
An IVF-based index splits the high-dimensional vector space by
clustering, and then locates the data from clusters with nearest cen-
troids. IVF-based indexes are popular for their small data expansion
and sequential data access characteristics. IVF-based indexes are es-
pecially suitable for data sizes in the millions, and they are fast and
easy to maintain. In this section, we describe the implementation
details for the IVF-based index in GaussDB-Vector.
Index Structure. GaussDB-Vector uses two-layer clustering for
the IVF index in order to balance the load of clusters. As Figure 2
shows, the index is composed of a sequence of linked pages, or-
ganized logically as a three-layer tree structure. The metapage is
the first page in the index file, and it stores the configuration and
statistics of the index, including the number of clusters in the upper
two layers, number of vectors, whether the index is compressed,
and whether the index uses product quantization. Following this
page are the first-layer clustering pages, containing centroids and
start positions of secondary-layer clusters. Each secondary-layer
cluster page contains the centroid and start point of full data in this
sub-cluster.

In order to accelerate distance computing and reduce the space
overhead, ANN search engines can take advantage of product quan-
tization (PQ) techniques. PQ splits each of the vectors into segments,
and each segment is represented by the closest centroid. If the index
uses PQ, then GaussDB-Vector will build a PQ table structure ac-
cording to the distribution of data and store it before the data pages.
The data pages then store PQ codes instead of full vectors in order
to reduce storage and distance computing cost. When the query
computes the distance of two vectors, it finds the centroids and
computes sum of distances between centroids. GaussDB-Vector
adopts PQ-ADC [24] to increase the precision of product quantiza-
tion, PQ-ADC only quantizes the data in the index, and the query
vector remains unchanged. On the other hand if PQ is not used,
data pages directly follow the cluster pages, and all the indexed
data is stored in the data pages. Each tuple in a data page contains
vector data and the corresponding tuple ID in the heap table. The
vector is used to select nearest neighbors by distance, and the tuple
ID is used to locate the row tuple in the original table.

IndexConstruction.During index construction, GaussDB-Vector
first collects a set of vectors from heap table into memory by us-
ing reservoir sampling and then conducts 𝑘-means clustering on
the samples, constructing cluster pages according to the results.
GaussDB-Vector then scans all the vectors in the table and labels
each vector with the ID of its nearest cluster (centroid), then sorts
all the vectors by label. Next GaussDB-Vector builds data pages for
each cluster according to the sorted vectors while also updating the
information in the cluster pages. Building data pages in sorted order
results in clusters that are stored contiguously, allowing search to
be optimized by batch processing and data prefetching.
Vector Top-𝑘 Search.When a top-𝑘 query comes, the query vec-
tor is first compared against the centroids in the first-layer cluster
pages to find 𝑁 nearest clusters, along with𝑀 nearest sub-clusters
from each cluster. In our evaluation, we observed that setting 𝑁 ×𝑀
to cover 5–10% of the dataset proves effective in achieving high
recall with minimal latency. Therefore, we set N and M as

√
10% of

total number of first/second layer buckets respectively by default (at
least 1). Then, GaussDB-Vector scans the candidate vector set,V𝑐 ,
consisting of vectors from the

∑𝑁
𝑖=1𝑀𝑖 sub-clusters, and computes

distances to each candidate vector. Next, GaussDB-Vector conducts
binary sort on these vectors according to distance to the query. The
binary sort iteratively picks a vector with distance 𝛿 and removes
vectors fromV𝑐 with distances greater than 𝛿 , stopping once |V𝑐 |
is less than 2𝑘 GaussDB-Vector then fetches the corresponding
rows from the table in the order of distances for vectors inV𝑐 and
checks their visibility. If a row is not visible (based on transactions),
GaussDB-Vector scans the next row. If there are not enough visible
rows, GaussDB-Vector sorts and scans the next partition of candi-
date vectors (resulting from the binary sort). In this way, the sorting
complexity should be O(|V𝑐 |+ 1

2 |V𝑐 |+
1
4 |V𝑐 |+

1
8 |V𝑐 |+· · ·+

1
2𝑛 |V𝑐 |),

which is O(2|V𝑐 |) when 𝑛 is infinite, and the total top-𝑘 fetching
complexity is O(2|V𝑐 | +𝑘 +𝑁𝑖𝑛𝑣𝑖𝑠𝑖𝑏𝑙𝑒), where 𝑁𝑖𝑛𝑣𝑖𝑠𝑖𝑏𝑙𝑒 is the num-
ber of rows being lazy deleted. Since the term |V𝑐 | often dominates
over other two terms, we simplify it as 𝑂 (|V𝑐 |). The full sorting
complexity is 𝑂 (|V𝑐 |𝑙𝑜𝑔(|V𝑐 |)) for any query. This mechanism al-
lows GaussDB-Vector to handle invalid entries appearing in the
candidate set due to situations such as asynchronous deletion and
multi-attribute filtering.
Vector Insert. For an insert query, GaussDB-Vector compares
distances between centroids of clusters to find the nearest cluster.
It then obtains the insert block ID that points to the last data page
corresponding to the nearest cluster from the cluster page and
appends the context ID (ctid) of the query vector to this page. The
ctid gives the location of the vector in the heap table. If the last
page is full, GaussDB-Vector tries to insert the vector into the next
page and then updates the insert block ID upon success. But if the
last page is full and it is also the last valid page, GaussDB-Vector
requests a sequence of recycled pages from the free space manager
(FSM) or creates new pages from the file system.
Vector Delete. For vector delete, GaussDB-Vector first identifies
the target row based on the query, then locates the cluster contain-
ing the corresponding vector by finding the cluster with centroid
nearest to the vector. The vector is then marked for deletion by
setting a deletion flag. In order to achieve low latency, physical
removal is conducted during asynchronous batch cleanup.

Graph ANN Index

 (1565>dim>130)

Data Page

 (dim>=1565,EnablePQ)

 �dim<=130)
Data Page

Data Page

idxtid1 idxtid1

idxtidD idxtidD

idxtid1

idxtidD

 (dim>=1565,DisablePQ)

Edge PageNode Page

MetaPage
Dim

pqtable_start_blkid

pqcode_start_blkidpqcode_end_blkid

Format

NodeSize

EdgeSize

StartPoint locks
PQTable Page

nclus

centroids[nseg][Dim/nseg][nclus]

nseg pqcode_size

distance_table[nseg][nclus][nclus]

vector ctid PQ0

dist1 sqrs1 PQ1

vector ctid PQtid0

dist1 sqrs1 PQtid1

PQ
PQ1

PQ2

PQD

EnablePQ

pqtable_end_blkid

distD sqrsD PQD
…

distD sqrsD PQtidD
… …

ctid PQ0

dist1 sqrs1 PQ1

distD sqrsD PQD
…

vector1 ctid1

idxtid1 dist1 sqrs1

idxtidD distD sqrsD
…

idxtid1 dist1 sqrs1

idxtidD distD sqrsD
…

vector2 ctid2

vectorN ctidN

…

Figure 3: Structure of Graph-Based Index

Vector Vacuum. GaussDB-Vector relies on a vacuum operation
to do space vacuum and batch cleanup of index files and tables. The
vacuum operation is executed automatically when the number of
tuples marked for deletion exceeds 10% of the table. For the IVF-
based index, the vacuum operation scans all clusters one by one.
For each cluster, GaussDB-Vector acquires new pages from FSM
or file system, adds a shared lock on the data pages in this cluster,
and then copies the undeleted vectors in this cluster to the new
pages sequentially. Then, GaussDB-Vector adds an exclusive lock
on the secondary cluster page and updates the start/insert block
ID. Once all vectors have been copied, GaussDB-Vector releases
all the locks and puts the replaced data pages for the cluster into
FSM. This procedure is executed iteratively until all clusters have
been processed. In this way, only update/insert queries on certain
clusters are blocked by vacuum, and only for a short period of time.
3.2 Graph-based Index
Graph-based indexes have the advantage of fast and accurate ap-
proximation for different data distributions. GaussDB-Vector adopts
Vamana graph [32] as the basic algorithm. Vamana graph is a di-
rected monotonic relative neighborhood graph which guarantees
a search complexity close to logarithmic time, and Vamana graph
restricts the maximal out-degree for each node to ease management
on the disk. Compared to NSG [21], Simhadri et. al. [32] show that
adding a soft coefficient to the distance when pruning edges brings
benefits to the performance. Aditi et. al. [22] propose methods for
data modification and show that the soft coefficient can make the
performance of Vamana graph stable, even after 40% of the data
is deleted. Based on these previous works, GaussDB-Vector judi-
ciously implements the structure of Vamana graph in terms of page
design for reducing I/O cost, lock management for supporting high
concurrency, and buffer management for reducing query latency.
GaussDB-Vector proposes a two-phase neighbor pruning method
to further reduce the overhead of vector insert and graph construc-
tion. Next we introduce the details of the graph-based index.
Index Structure. GaussDB-Vector builds and stores the graph
structure in the blocks of index files. The first page in the index files

is the metapage, and it stores metadata about the index including
vector dimension, storage method, object size, start locations of
difference page types, product quantization configurations, and
locks for the current index. Following the metapage, the PQTable
page stores the centroids of each PQ segment along with distances
of all centroid pairs in each segment. The main components of the
graph-based index are the nodes, edges, and PQ codes.

GaussDB-Vector designs three structures for adapting to differ-
ent scenarios. (1) If the vector dimension is not very large, GaussDB-
Vector stores all data associated with a single vector (i.e. its PQ
code and neighbor codes, etc.) together in one page. When a query
navigates the graph index, it can easily get the PQ code of the cur-
rent vector as well as all the PQ codes of the neighbors by reading
a single page, thereby reducing overhead of I/O. For example in
Figure 3, the threshold value of 130 dimensions is calculated as-
suming 96 neighbors, 6-byte tuple IDs, 4-byte float vector values,
96-byte PQ codes (maximum), and 8*1024 bytes of space per page.
(2) If the dimension of vectors is larger, the neighbor codes are too
large to be put on one page. GaussDB-Vector moves the PQ codes
out to a separate zone to avoid redundancy, and the data page only
stores the tuple IDs of each neighbor. Even so, as the total size of
PQ codes for all the vectors is small compared to the index, they
can easily be cached in memory. Therefore, this structure is still
very efficient even though GaussDB-Vector needs to read multiple
PQ code pages for getting the neighbors. For example in Figure 3,
the threshold value of 1565 dimensions is calculated using the same
assumptions as before. (3) Users can also select a compression mode
for the index structure if the data volume is very large (e.g. 1 bil-
lion vectors on one machine) or the dimension is very high (e.g.
2048). In this structure, GaussDB-Vector separates nodes and edges
completely and each of them can be compactly arranged. If PQ is
enabled for a query, the raw vectors can be dropped from the index
to further reduce storage cost.
Index Construction. To quickly build the graph-based index,
GaussDB-Vector clusters the vectors intoN𝑔 overlapped groups so
that each vector belongs to its two nearest clusters. For each group,
GaussDB-Vector constructs a small graph with only half the maxi-
mum out-degrees of the full graph. In this way, the index can be
built in memory to avoid frequent data swaps, and global connectiv-
ity can also be maintained as each vector belongs to two subgraphs.
The index construction procedure is shown in Algorithm 1.

Each subgraph is constructed by incrementally inserting vectors
into a randomly initialized graph, as shown in Algorithm 2. In
this way, early inserted nodes can retain some longer edges to
reduce the radius of the graph. The insertion operation relies on
vector search and neighbor pruning to keep the neighbors close and
maximize the edge angle (this feature is proposed by MRNG [21]).
For vector search, Algorithm 4 shows the greedy search procedure.
Given a query vector, a root node is retrieved from the min-heap
representing the closest vector so far to the query, and then the
distances between its unvisited neighbors and the query vector are
computed. Next, these neighbors are inserted into the min-heap.
The min-heap has a limited size so that nodes far away from the
query are gradually evicted. This process continues until there are
no more unvisited nodes. Note that duplicate vectors are linked
into one node, and only the main node participates in neighbor
selection. This greatly improves the quality of the graph because

Algorithm 1: BuildGraphIndex
Input: A column of vector data in table S, number of

segments for PQ 𝑆𝑝𝑞 , number of clusters in each PQ
segment 𝐶𝑝𝑞 , number of subgraphs 𝑁𝑔

Output: A graph-structured index G.
1 G ← initialize an empty graph structure on the disk ;
2 𝑃𝑄 ← calculate PQ table on S ;
3 G ← calculate PQ code for each node ;
4 𝑆𝑎𝑚𝑝𝑙𝑒 ← sample from S;
5 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠 ← cluster 𝑆𝑎𝑚𝑝𝑙𝑒 into 𝑁𝑔 clusters ;
6 for (𝑖 ← 0; 𝑖 < 𝑁𝑔 ; 𝑖 ← 𝑖 + 1)
7 G𝑠𝑢𝑏 ← ∅;
8 foreach (𝑣 ∈ S)
9 𝑖𝑑𝑠 ← calculate the nearest two centroid ids ;

10 if 𝑖 ∈ 𝑖𝑑𝑠 then
11 G𝑠𝑢𝑏 ← G𝑠𝑢𝑏 ∪ {𝑣} ;
12 G𝑠𝑢𝑏 ← Call BuildSubgraph() to build the Vamana

graph with 48 out-degree on vectors in G𝑠𝑢𝑏 ;
13 G ← G ∪ G𝑠𝑢𝑏 ⊲ Merge the in-memory subgraph into

on-disk index with 96 out-degree for each node ;
14 return G ;

Algorithm 2: BuildSubgraph
Input: A column of vector data in this subgraph S.
Output: An in-memory Vamana graph G.

1 G ← initialize an in-memory regular graph ;
2 parallelly foreach(𝑣 ∈ S)
3 G ← insert 𝑣 in G ;
4 return G ;

having too many duplicate neighbors can create cliques, leading to
local minima traps that result in low recall during searches.

The total cost consists of subgraph construction, which for each
subgraph is proportional to |𝑆 |/|𝑁𝑔 | times the insertion complexity,
along with the overhead of the partitioning phase (Algorithm 1
lines 2–5). For this phase in particular, the exact cost depends on
the number of PQ segments and clusters in each segment, but in
general is linear with respect to |𝑆 |.
Vector Top-k Search. ANN search on the graph-based index fol-
lows the procedure in Algorithm 4, returning results from the can-
didate set. However, as the index is stored on disk, the search query
needs several random I/Os to get the candidates and their neigh-
bors. As the size of the shared buffer is limited, only the data that
will be frequently visited is worth caching. Based on this principal,
GaussDB-Vector caches nodes and edges visited in the first two
steps when searching, along with the PQ table and codes, while
other data is fetched from disk. GaussDB-Vector also optimizes
SSD read speed by fetching neighbors using multiple I/O threads.
Specifically, the default value of𝑀𝑔𝑟𝑎𝑝ℎ is 128. If the total number
of data rows is smaller than 128, the candidate set will decrease to
the number of rows automatically. If we cannot get enough results
(𝑘-NN vectors) from candidate set due to invisible or filtered rows,

Algorithm 3: VectorInsert
Input: An in-memory graph G, a query vector 𝑣 .
Output: An in-memory graph with query vector G.

1 𝑝𝑜𝑜𝑙 ← get candidates list by searching query 𝑣 from G ;
2 𝛼 ← 1.2 ;
3 N(𝑣) ← ∅ ;
4 D ← {𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑘, 𝑣) |𝑘 ∈ 𝑝𝑜𝑜𝑙} ;
5 for (𝛼 ′ ← 1.0;𝛼 ′ ≤ 𝛼 ∧ |N (𝑣) | < 𝑑𝑒𝑔𝑟𝑒𝑒;𝛼 ′ ← 𝛼 ′ ∗ 1.2)
6 foreach (𝑘 ∈ 𝑆𝑂𝑅𝑇 (𝑝𝑜𝑜𝑙, 𝑎𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔))
7 𝑑𝑘𝑘 ′ ←𝑀𝑖𝑛(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑘, 𝑘′) |𝑘′ ∈ N (𝑣)) ;
8 if 𝐷𝑘𝑣 ≤ 𝑑𝑘𝑘 ′ ∗ 𝛼 ′ then
9 N(𝑣) ← N(𝑣) ∪ {𝑘} ⊲ As k is closer to v than to

any existing neighbor of v, v connects to k ;
10 G ← set neighbors N(𝑣) ;
11 foreach (𝑝 ∈ N (𝑣))
12 foreach (𝑝′ ∈ 𝑆𝑂𝑅𝑇 (N (𝑝), 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔))
13 if 𝐷𝑝𝑝′ ≤ 𝐷𝑝𝑣 then
14 break;
15 if 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑣, 𝑝′) < 𝐷𝑝𝑝′ ∗ 𝛼 then
16 N(𝑝) ← N(𝑝) − 𝑝′ + 𝑣 ⊲ As p’ is closer to v

than to p, p connects to v instead ;
17 G ← set neighbors N(𝑝) ;
18 break;
19 return G ;

Algorithm 4: VectorSearch
Input: In-memory graph G, query 𝑣 , candidate size𝑀𝑔𝑟𝑎𝑝ℎ .
Output: A set of vectors C visited when searching.

1 C ← ∅ ;
2 H ← a min-heap with size𝑀𝑔𝑟𝑎𝑝ℎ with the fixed start

point in the graph G ;
3 𝑝 ← pop a node fromH ;
4 C ← C ∪ {𝑝} ;
5 while 𝑝 is valid do
6 N(𝑝) ← unvisited neighbors of p ;
7 foreach (𝑝′ ∈ N (𝑝))
8 H ← insert 𝑝′ and its distance to 𝑝 ;
9 𝑝 ← pop a node fromH ;

10 C ← C ∪ {𝑝} ;
11 return C ;

GaussDB-Vector will double the candidate size𝑀𝑔𝑟𝑎𝑝ℎ and search
more candidates starting from the existing candidates.
Vector Insert.Given a vector to insert, the candidate set is obtained
by searching the graph for the nearest neighbors, and then selecting
some of the nodes in the candidate set to keep as the neighbors of
the vector, as shown in Algorithm 3. The aim of neighbor selection
is to find the nodes whose distance to the vector is smaller than the
distances to the other kept neighbors of the vector. Vamana [32]
introduces a relaxation coefficient to keep more connections, and
this can enhance the overall connectivity of the graph. Additionally,
in order to make the vector reachable by existing nodes, GaussDB-
Vector tries to add the vector as a neighbor of each of its neighbors.

If the vector is selected as a valid neighbor of one of its neighbors,
then the farthest neighbor of the neighbor is replaced by this vec-
tor. For each constructed subgraph, GaussDB-Vector writes the
neighbors of each node to the full graph on disk.

Compared to vector search, vector insert is more costly as it
needs to compute the distances not only between the inserted
vector and its neighbors, but between the inserted vector and
its neighbors’ neighbors. For maximum out-degree 𝑚, the total
complexity is approximately O(𝑚2), which is smaller than that in
DiskANN [32], where the worst-case complexity is O(𝑚3). When
adding the reverse edge (in-edge from neighbor 𝑝 to the inserted
node 𝑣), DiskANN finds edge-dominated nodes by checking each
neighbor of 𝑝 with every other neighbor of 𝑝 , with complexity
O(𝑚2). Because this happens for every neighbor 𝑝 of node 𝑣 , the
total complexity of inserting 𝑣 is O(𝑚3). On the other hand, the
neighborhood of 𝑝 is linearly scanned (Alg. 3 line 12), using the far-
thest neighbor of 𝑝 as a heuristic for identifying dominated nodes.
The total complexity of vector insert is reduced to O(𝑚2).
Vector Delete. Like for the IVF-based index, lazy deletion is also
used for the graph-based index. For a delete query, GaussDB-Vector
needs to find the vector in the graph and mark it deleted. However,
different from the IVF-based index, there is no guarantee that the
vector can be located using ANN search. To solve this problem,
GaussDB-Vector adds an inverted list that can be used to locate
the tuple (row) ID (tid) of a node in the index by using the ctid
of the vector in the heap file. In this way, deleted nodes will not
be put into the candidate set, meanwhile avoiding the overhead
of performing a table lookup for checking visibility. In this way,
GaussDB-Vector supports in-place update (which is equivalent to
a insertion after a deletion) in order to avoid garbage accumulation.
Vector Vacuum. GaussDB-Vector regularly recycles dead nodes
when more than 10% data is deleted or updated. As Algorithm 5
shows, GaussDB-Vector first finds the locations of all dead nodes by
scanning the index in parallel. But before pruning edges connected
to dead nodes, GaussDB-Vector needs to ensure that existing insert
queries have been completed, as they may add connections to dead
nodes. To achieve this, GaussDB-Vector uses two index-level exclu-
sive locks, one for preventing new inserts and the other for waiting
on old inserts to complete. Nodes connected to dead nodes are first
reinserted into the graph in order to obtain new neighbors. Then
after reconstructing the nodes connected to dead nodes, all dead
nodes are free to be physically deleted and the associated pages can
be recycled. In order to avoid existing delete and search queries
visiting recycled pages, physical delete waits for these queries to
terminate. GaussDB-Vector also tries to fix disconnections in the
graph. Any unreachable nodes in the graph due to deleted vec-
tors are reinserted into the graph. This can avoid decreasing index
quality when a large number of vectors undergo update.

The number of reinsertions depends on the node in-degree.
In general, the in-degree is close to the out-degree but in some
cases can be 4-5 times higher for certain hot spots [34]. Even so,
GaussDB-Vector can perform reinsertions in parallel in order to
reduce the total latency.

4 SCALAR-VECTOR HYBRID QUERIES
Vector databases can support scalar filtering by extending the size
of the candidate set for both graph and IVF indexes until enough

Algorithm 5: Index_Vacuum
Input: A graph-based index file G with dead tuples.
Output: A vacuumed graph-based index file G.

1 D ← ∅ ;
2 parallelly foreach(𝑛 ∈ G)
3 if 𝑛 is invisible or marked dead then
4 D ← D ∪ {𝑛} ;
5 prevent new inserts and wait for existing inserts to end ;
6 parallelly foreach(𝑛 ∈ G)
7 if N(𝑛) ∩ D ≠ ∅ then
8 G ← reinsert 𝑛 into G ;
9 prevent new delete/search and wait for existing

delete/search to end ;
10 free all the delete nodes ;
11 return G ;

/HDI�1RGH
1 3

/HDI�1RGH
5 6

/HDI�1RGH
8 9

/HDI�1RGH
12 13

/HDI�1RGH
20 35

/HDI�1RGH
75 80

/HDI�1RGH
82 89

/HDI�1RGH
92 97

/HDI�1RGH
110 121

Balanced Tree
<id, vec>

YHFWRU
Vec
Ctid

YHFWRU
Vec
Ctid

YHFWRU
Vec
Ctid

YHFWRU
Vec
Ctid

YHFWRU
Vec
Ctid

YHFWRU
Vec
Ctid

YHFWRU
Vec
Ctid

YHFWRU
Vec
Ctid

YHFWRU
Vec
Ctid

YHFWRU
Vec
Ctid

YHFWRU
Vec
Ctid

YHFWRU
Vec
Ctid

… …

0LGGOH�1RGH
4 10 IVF

0LGGOH�1RGH
15 70 IVF

0LGGOH�1RGH
90 101 IVF

5RRW�1RGH
12 75 Graph

Insert: <95, vec>

/HDI�1RGH
82 89

/HDI�1RGH
92 97

/HDI�1RGH
110 121

0LGGOH�1RGH
90 101 IVF

Split on the Leaf Node

/HDI�1RGH
82 89

/HDI�1RGH
92 95

/HDI�1RGH
110 121

0LGGOH�1RGH
90 101 IVF

/HDI�1RGH
97

Split on the Middle Node

0LGGOH�1RGH
90 101 IVF

5RRW�1RGH
12 75 Graph

Insert: <95, vec>

0LGGOH�1RGH
90 95 IVF

5RRW�1RGH
12 75 Graph

0LGGOH�1RGH
101 IVF

0LGGOH�1RGH
15 75 IVF

0LGGOH�1RGH
95 101 IVF

5RRW�1RGH
12 90 Graph

Rotate if neighbor has space

OR

Figure 4: A scalar-vector index for hybrid search.

vectors are retrieved. However, this method is slow, especially when
the selectivity of the condition is small, due to excessive distance
computations and data accesses. GaussDB-Vector supports effi-
cient hybrid search with a multi-column hybrid index, and the
index integrates both IVF and graph structures.

As Figure 4 shows, GaussDB-Vector adopts a balanced tree as
the basic structure for the hybrid index so that the scalar data can
be quickly searched to locate the local vector index with higher
selectivity. The resulting hybrid search can be even faster than a
pure vector query, and the performance is also stable for different
conditions. The hybrid index supports both equality and range
conditions. Examples of hybrid search queries are shown below:

1 SELECT id FROM t WHERE t.id = 10 ORDER BY
2 t.vec <euc> '[3,1,4,...,2]' LIMIT 3;
3 SELECT id FROM t WHERE t.id BETWEEN 10 AND 20
4 ORDER BY t.vec <euc> '[3,1,4,...,2]'
5 LIMIT 10;
6 SELECT id FROM t WHERE t.id < 20 ORDER BY
7 t.vec <euc> '[3,1,4,...,2]' LIMIT 10;

4.1 Hybrid Index Structure
The scalar values are organized as a balanced tree structure that
can be searched in O(𝑙𝑜𝑔(𝑛)) time. Just like a b-tree in a relational
database, each node in the hybrid index occupies one page, and
it also supports data updates by using INSERT, SPLIT, and ROTATE
operations. In each root and middle node, a pointer linking the
metapage of a vector subindex is arranged at the beginning, and
a series of scalar division values and pointers linking to the next
level are staggered and tightly arranged. In each leaf node, all the
scalar values are tightly arranged, and each of the scalar values is
linked to a vector and ctid in the heap table.
4.2 Hybrid Search
In the hybrid index, all the root and middle nodes have vector
subindexes. When a query searches a node where the scalar pred-
icate selects more than 50% of the data, the query can search for
the answer from the vector subindex directly. Thus the query does
not have to scan all the leaf data and individually rank the vectors.
However, the leaf nodes themselves do not have vector subindexes.
This is because a leaf node will not contain many tuples (less than
100 in general), and sequence scan is fast enough for small amount
of data. Therefore, queries with small selectivities can quickly lo-
cate the scalar data and get the answer by sorting a small number
of vectors, and queries with high selectivities can search the answer
from a vector subindex with the minimal super-set of selected data.

4.3 Hybrid Data Update
An update query may involve insert, delete or both. Data delete is
cheap because the deleted vector only needs to be marked as dead
instead of removing it immediately. But data insert may trigger node
splitting or rotating if the inserted page is full. Splitting happens
when one node is full and the neighbors are also full. It creates a new
node with half of the values, then inserts a pointer to the new node
into the parent node. Rotating happens when the inserted node is
full but neighbors still have space. For example in the bottom of
Figure 4, the last middle node is full, but the left still has one free
space, and thus 75 is moved down to the middle node and 90 moved
up to the root node so that 95 can be inserted successfully. Rotating
causes update operations in the last middle node and the root node
along with an insert operation in the left middle node.

Node modification dominates the cost of data update in the
hybrid index, especially for nodes with vector subindexes. This is
also one of the reasons why vector subindexes are not built on the
leaf nodes (the leaf node is highly likely to be split frequently). For
the vector subindexes, the splitting and merging cost is higher for
the graph-based index than for the IVF index. For the IVF index, the
distribution of vectors does not change after node splitting/merging
in most cases, and each bucket can be evenly split. But sometimes,
different ranges of scalar values correspond to different vector
distributions (even if the ranges are close to each other) so that
the IVF index needs to be rebuilt over the new nodes. Likewise for
the graph-based index, deleting half of the data in one subindex
when splitting degrades the quality of the index, and GaussDB-
Vector overcomes this by rebuilding on each of the new nodes. A
graph-based index is only used in the root node or middle nodes
containing more than 10 million vectors so that the construction
cost can be compensated by the search performance gain.

Query

0.4 0.5

0.90.8

DN1
DN2

DN3

DN4

Data Sharding: Insert query into one DN

Query

DN1
DN2

DN3

DN4

Query Schedule: Send query to the closest DNs

k=3
k=10

k=18

Data Sharding: Adaptive sharding for dynamic data distribution

k=3,10,18

k=10,18

k=18

DN1
DN2

DN3

DN4

DN1
DN2

DN3

DN4

Interted
Deleted

Move from DN2 to
DN1 to repair the

data sharding

Figure 5: Data is inserted into the nearest node, and query
will be sent to multiple near nodes.

In summary, the design of the hybrid index involves a tradeoff
between search performance and update efficiency. Having more
vector indexes on a greater number of scalar index nodes improves
search performance but reduces update efficiency. GaussDB-Vector
achieves a balance between search and updates by selectively build-
ing different types of vector indexes based on the node type and
the volume of data associated with each node.

5 DISTRIBUTED VECTOR SEARCH
The two-tier architecture of GaussDB-Vector enables it to effi-
ciently manage and scale large volumes of vectors. It supports
billions of vectors on individual data nodes and can be expanded to
handle trillions of vectors by adding more machines. In this section,
we detail the methods used for distributing vectors and routing
queries across the data nodes.
Data Sharding. In GaussDB-Vector, all the data is distributed by
distance. Vectors are split into 𝑐 clusters, with each cluster corre-
sponding to one of the 𝑐 data nodes. The centroid of each cluster
is stored in a coordinate node. As Figure 5 shows, the distribution
status has 4 types. In the RANDOM phase, the centroids information
is invalid, and inserted vectors are randomly distributed to the data
nodes. After the volume of data reaches a threshold (e.g. 50,000),
GaussDB-Vector starts the FULL REDISTRIBUTING phase. In this
phase, GaussDB-Vector clusters the data and moves the tuples to
the corresponding data nodes. During this phase, clustering blocks
data update queries for a short time, and search queries are still
sent to all data nodes. After the centroids are decided, new vectors
are inserted into the nearest data nodes, and old vectors are moved
in the background. When the status becomes CLUSTERED, search
queries are sent to close clusters, increasing the throughput. Data
updates may cause the distribution to shift, degrading the quality
of the clustering. GaussDB-Vector supports periodic incremental
redistribution. In the background, GaussDB-Vector samples data
from each data node and computes centroids for each data node.
GaussDB-Vector then relabels each vector, and if the ratio of shifted
vectors exceeds a threshold (e.g. 10%), GaussDB-Vectorwill update
the centroids and start redistribution in the background.
Query Routing. One of the challenges in distributed vector search
is determining how many data nodes each search query should be

sent to. If too few data nodes are searched, the recall of the ANN
search will be very low. Conversely, if too many data nodes are
involved, the performance will be suboptimal. We can estimate the
cardinality of each data node for search queries [33], and when
users do ANALYZE for distributed tables, GaussDB-Vector trains
a cardinality model for each data node using a small data sam-
ple, and the models are stored in the coordinate node. For range
queries, the query vector and distance threshold are used to directly
estimate the cardinalities of each data node, allowing the query
to be sent to only those data nodes with large cardinalities. For
top-𝑘 queries, cardinality estimation of each data node is more
complicated. GaussDB-Vector uses binary search on distances to
find the threshold where the sum of all estimated cardinalities on
data nodes exceeds 𝑘 , and then queries are sent to those nodes
with high contributions. For hybrid queries with a scalar filter con-
dition, selectivity of the filter condition is considered during the
cardinality estimation. However, cardinality estimation errors are
unavoidable, even with sophisticated models. We find that error
propagation across various query types showed that query vec-
tors near a cluster centroid (i.e., assigned to a single machine in
our distributed architecture) were least likely to suffer accuracy
degradation. In contrast, queries with vectors near inter-cluster
boundaries experienced the most significant performance decline.
To address this issue, GaussDB-Vector additionally selects clusters
whose centroids’ distance to the query vector is equal to or less than
the maximum distance among currently selected cluster centers.

6 HARDWARE ACCELERATION
GaussDB-Vector can improve vector search performance by uti-
lizing specialized hardware like NPUs or GPUs, which are capable
of calculating distances for batches of vector pairs. To utilize new
hardware, the distance computation between two sets of vectors
is transformed into basic matrix operations by using the formula
𝐷 (𝑥,𝑦) = 𝑥2 − 2 · (𝑥 × 𝑦𝑇) + 𝑦2, where 𝑥2 is a self sum-product of
rows of 𝑥 that can be precomputed when loading each vector into
an index. Note that a fairly large matrix is needed to fully utilize
the parallelism of NPUs.

Using NPUs/GPUs can significantly accelerate vector index con-
struction and searching. For the IVF-based index, GaussDB-Vector
uses NPUs to conduct data clustering. It computes distances of
vectors to centroids in the NPU and labels the vectors according to
their closest centroids, and then it sends vectors in the same cluster
to the NPU to refine the centroid. After clustering is completed,
the centroids are fixed, and vectors are labeled in batch accord-
ing to their distances to centroids computed in the NPU. For the
graph-based index, GaussDB-Vector builds a graph-based index by
inserting each vector into a random graph in parallel, as mentioned
in Section 3. For each inserted vector, we find the candidate set
and select edges for it and its neighbors, and the performance bot-
tleneck is distance computations during edge pruning. Therefore,
we accumulate the inserted vectors, candidate sets closest to the
vectors, and the neighbors of vectors in the candidate sets, and
compute the distances in the NPU. Based on the distance table, we
run the neighbor selection algorithm for each node.

GaussDB-Vector also supports using SIMD, available in main-
stream CPUs, to accelerate distance computing for single vector
pairs by folding the vectors into segments.

Table 1: Datasets

dataset #rows #dims #cols scalar ndv distance
SIFT 10M 128 1 / Euclidean
GIST 1M 960 1 / Euclidean

HUAWEINet 15M 1024 1 / Cosine
SIFT-H 10M 128 2 1M Euclidean
GIST-H 1M 960 2 500K Euclidean

HUAWEINet-H 10M 1024 2 1M Cosine
SIFT-10B 10B 128 1 / Euclidean

7 EXPERIMENTS
7.1 Experimental Settings
In this section, we conduct experiments for testing vector search
performance (see Section 7.2), hybrid search performance (see Sec-
tion 7.3), scalability on large scale datasets (see Section 7.4) and
acceleration by using heterogeneous hardware (see Section 7.6).
Datasets.We use three basic datasets with representative dimen-
sions (128, 960, and 1,024). SIFT contains a collection of image em-
beddings generated using the SIFT algorithm [27]. GIST contains
vectors describing the GIST features of images [29]. HUAWEINet is
a collection of embedding vectors for documents in the telecom-
munication field provided by Huawei. We extend each dataset by
adding an ID column that is a biased integer column with duplicates
and a large range of distinct values, and we test hybrid search on
these datasets. We extend SIFT to SIFT-10B to test the scalability
of distributed GaussDB-Vector. Table 1 shows the details.
Baselines.We take three well-known and widely-used ANN sys-
tems, ElasticSearch, Milvus, and PGVector, as baselines. In or-
der to ensure fairness of comparison, we only test the standalone
versions of these systems. ElasticSearch is a NoSQL ANN sys-
tem. It supports very comprehensive document and vector simi-
larity retrieval features, stores semi-structured data (like JSON),
and supports near real-time ANN query processing. Milvus is a
storage-compute disaggregated system. It is also a vector-native
ANN system, and all the data is organized as vector index struc-
tures. PGVector is an extension of PostgreSQL to support vector
data storage, computing, and searching. Both GaussDB-Vector and
PGVector are relational vector databases and support real-time
ANN query processing. Additionally, we use HNSW indexes for
all baselines, as HNSW performs the best on these datasets among
all indexes supported by these systems. We build a graph-based
index for single vector searching queries, and hybrid index for
multi-column searching queries in GaussDB-Vector. And the de-
fault value for size of probing candidate set is 128. The index sizes of
GaussDB-Vector are 9GB for 10M SIFT, 8.6 TB for 10B SIFT-10B,
and 35GB for 10M HUAWEINet. These are comparable to the index
sizes of the baseline systems, Milvus and ElasticSearch.
Hardware Environment. We conduct experiments on clusters
of 40 machines. Each machine is equipped with 72 Intel 3.00GHz
CPU cores, 64GB memory and 2TB of disk, connected by 10 Gigabit
Ethernet. One machine also contains eight Ascend-920B type NPUs.

7.2 Vector Query Performance
Concurrent Execution.We compared query latency, recall, and
throughput across the three datasets with an increased number of
connections. We set the concurrency to 50 to ensure that the num-
ber of cores wouldn’t become a bottleneck. Figure 7 and Figure 8

90 92 94 96 98 100
Recall(%)

1
2
3
4
5
6

Ti
m

e(
m

s)
GaussVector
Milvus
ElasticSearch
PGVector

(a) SIFT dataset.

90 92 94 96 98 100
Recall(%)

2

4

6

8

10

Ti
m

e(
m

s)

GaussVector
Milvus
ElasticSearch
PGVector

(b) GIST dataset.

90 92 94 96 98
Recall(%)

0
10
20
30
40
50
60

Ti
m

e(
m

s)

GaussVector
Milvus
ElasticSearch
PGVector

(c) HUAWEINet dataset.

Figure 6: Average latency of ANN search with single connection.

90 92 94 96 98 100
Recall(%)

0
5

10
15
20
25
30

Ti
m

e(
m

s)

GaussVector
Milvus

ElasticSearch
PGVector

(a) SIFT dataset.

90 92 94 96 98 100
Recall(%)

4
6
8

10
12
14
16

Ti
m

e(
m

s)
GaussVector
Milvus
ElasticSearch
PGVector

(b) GIST dataset.

90 92 94 96 98
Recall(%)

0
50

100
150
200
250
300
350

Ti
m

e(
m

s)

GaussVector
Milvus
ElasticSearch
PGVector

(c) HUAWEINet dataset.

Figure 7: Average latency of ANN search with multiple connections.

90 92 94 96 98 100
Recall(%)

5000
10000
15000
20000
25000
30000
35000

QP
S

GaussVector
Milvus

ElasticSearch
PGVector

(a) SIFT dataset.

90 92 94 96 98 100
Recall(%)

5000

10000

15000

20000

25000

30000

QP
S

GaussVector
Milvus
ElasticSearch
PGVector

(b) GIST dataset.

90 92 94 96 98
Recall(%)

0
1000
2000
3000
4000
5000

QP
S

GaussVector
Milvus
ElasticSearch
PGVector

(c) HUAWEINet dataset.

Figure 8: QPS of ANN search with multiple connections.

p50 p95 p99 max
Percentile

101

102

103

Ti
m

e(
m

s)

GaussVector
Milvus
ElasticSearch
PGVector

(a) SIFT dataset.

p50 p95 p99 max
Percentile

101

102

103

Ti
m

e(
m

s)

GaussVector
Milvus
ElasticSearch
PGVector

(b) GIST dataset.

p50 p95 p99 max
Percentile

101

102

103

104

Ti
m

e(
m

s)

GaussVector
Milvus
ElasticSearch
PGVector

(c) HUAWEINet dataset.
Figure 9: Insert latency.

show the results. On all three datasets, GaussDB-Vector has the
lowest query latency and the highest throughput. This is because
GaussDB-Vector has a superior index structure compared to base-
line methods, which significantly reduces resource contention by
minimizing computational and I/O overhead during approximate
nearest neighbor (ANN) searches. PGVector has better performance
than ElasticSearch and Milvus because PGVector is designed
for on-disk scenarios, and it has better buffer management, while

ElasticSearch and Milvus have to load index segments for each
query, incurring high I/O costs.
Insertion Performance. We also compared INSERT performance
on the three datasets. Figure 9 shows the results. PGVector performs
the worst compared to the other baselines. Only PGVector and
GaussDB-Vector are real-time systems, which means that newly
written tuples need to be flushed to disk index immediately. Milvus
and ElasticSearch cache the newly added vectors in memory and
build the index when the number of vectors exceeds a threshold.

90 92 94 96 98 100
Recall(%)

2
4
6
8

10
12
14

Ti
m

e(
m

s)
GaussVector
Milvus
ElasticSearch
PGVector

(a) SIFT dataset, 90% scalar selectivity.

90 92 94 96 98 100
Recall(%)

2
4
6
8

10
12
14

Ti
m

e(
m

s)

GaussVector
Milvus
ElasticSearch
PGVector

(b) SIFT dataset, 50% scalar selectivity.

90 92 94 96 98 100
Recall(%)

2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Ti
m

e(
m

s)

GaussVector
Milvus
ElasticSearch
PGVector

(c) SIFT dataset, 10% scalar selectivity.

Figure 10: Search latency for scalar-vector query.

90 92 94 96 98 100
Recall(%)

2
4
6
8

10
12

Ti
m

e(
m

s)

GaussVector
Milvus
ElasticSearch
PGVector

(a) SIFT dataset.

90 92 94 96 98 100
Recall(%)

5
10
15
20
25
30
35

Ti
m

e(
m

s)

GaussVector
Milvus
ElasticSearch
PGVector

(b) GIST dataset.

90 92 94 96 98
Recall(%)

0
20
40
60
80

100
120

Ti
m

e(
m

s)

GaussVector
Milvus
ElasticSearch
PGVector

(c) HUAWEINet dataset.

Figure 11: Comparison of hybrid search latency.

p50 p95 p99 max
Percentile

101

102

103

Ti
m

e(
m

s)

GaussVector
Milvus
ElasticSearch
PGVector

(a) SIFT dataset.

p50 p95 p99 max
Percentile

101

102

103

104

Ti
m

e(
m

s)

GaussVector
Milvus
ElasticSearch
PGVector

(b) GIST dataset.

p50 p95 p99 max
Percentile

101

102

103

104

Ti
m

e(
m

s)

GaussVector
Milvus
ElasticSearch
PGVector

(c) HUAWEINet dataset.

Figure 12: Comparison of insertion with auto incremental id.

10 20 30 40
#Machines

40

60

80

100

120

140

La
te

nc
y(

m
s)

Latency(ms)

500
750
1000
1250
1500
1750
2000

Th
ro

ug
hp

ut
(q

ps
)Throughput(qps)

Figure 13: Scalability.

0 500 100015002000250030003500
Elapsed Time (seconds)

0
250
500
750

1000
1250
1500
1750
2000

QP
S

SIFT
HuaweiNet

Figure 14: Update QPS.
This can also explain why the maximal and 99th insert query la-
tency of ElasticSearch and Milvus is much higher. Compared
to PGVector, GaussDB-Vector controls the insertion cost much
better because it has better search and edge pruning performance.
Serial Execution.We compared query latency and recall on the
three datasets. Figure 6 shows the results. For SIFT, GaussDB-Vector
performs the best, and has the least query time for all different re-
calls because the edge pruning algorithm used in GaussDB-Vector
provides shorter paths for similar vectors, and the index structure
design minimizes the random IO times during query execution.
PGVector performs the worst when recall is high because it does
not optimize the IO and computation for large candidate sets. For
GIST and HUAWEINet, GaussDB-Vector and Milvus perform the

best. This is because higher dimensions makes distance computing
dominate the query time, and both GaussDB-Vector and Milvus
have better SIMD optimization and quantization techniques to re-
duce distance computing cost.

7.3 Hybrid Search
Effect of Scalar Selectivity. In this experiment, we generate ANN
queries with different scalar conditions and group them by selectiv-
ity on scalar values. Figure 10 shows the performance comparison
on different selectivities. PGVector is most affected by selectivity.
When the selectivity becomes low, the query will scan many re-
dundant data in the index of PGVector, increasing the query time.
Instead, ElasticSearch and Milvus organize data as segments,
splitting data according to the scalar value. GaussDB-Vector per-
forms the best on all selectivities, because the hybrid index can be
adaptive to conditions with any selectivity, and it can select the
best subindex to search for the query. ElasticSearch and Milvus
have worse performance when the selectivity is high because they
must merge results from different segments.
Overall Performance. In this experiment, we compare the overall
performance on randomly generated scalar-vector hybrid queries.

1M 10M 100M 1B
Data Size

102

103

104

105

Bu
ild

 T
im

e(
s)

CPU
CPU+NPU

(a) SIFT dataset, IVF Index.

5K 1M 2M
Data Size

103

Bu
ild

 T
im

e(
s)

CPU
CPU+NPU

(b) GIST dataset, Graph Index.
Figure 15: Acceleration by using Ascend NPU.

Figure 11 shows the results. GaussDB-Vector performs the best
because the hybrid index has stable performance on all queries.
Insertion Performance. The search performance and insert per-
formance for hybrid scalar-vector data is a trade-off. Therefore, we
tested the insertion latency by inserting tupleswith auto-incremented
ID as the indexed scalar field. Figure 12 shows the results of inserting
one row per query. The overall insert performance of GaussDB-Vector
is competitive compared to baselines due to the strategy that differ-
ent layer of nodes use different types of vector subindex.

7.4 Scalability
We test distributed GaussDB-Vector on the large dataset SIFT-10B,
and the evaluation results show that we can reach 99% recall, around
60 ms latency and 1,500 QPS throughput with 40 machines. As
Figure 13 shows, GaussDB-Vector can have better performance
with machine scale-out. When the number of machines is below 30,
the performance has linear growth because GaussDB-Vector has
good scalability due to vector data sharding and query scheduling
techniques. When the number of machines increases further, the
speed of performance growth decreases because the cost of data
transformation and results merging becomes more significant.

7.5 Update Throughput
We also test update workloads on SIFT and HUAWEINet. As Fig-
ure 14 shows, throughput of updates slightly decreases periodically
because the data deletions increase fragmentation. However, when
the volume of updated data reaches 10% of total data size, vac-
uuming starts, restoring throughput. The maximal performance
regression is around 5%-15%.

7.6 NPU Acceleration
We deploy GaussDB-Vector on a machine with NPU devices and
run index construction and search queries on the system. Figure 15
shows that NPUs can bring 1-2 orders of magnitude improvement
on index building tasks and IVF scan because NPUs can increase
the parallelism of distance computing. However, the performance
gain is not significant on graph index scan because graph search is
hard to parallelize and the benefits of parallel computing cannot
compensate for the cost of cross-device data transformation.

7.7 Real Use Case: Coding Copilot
GaussDB-Vector has been used to support software development,
including code annotation, code completion, and test code genera-
tion. The copilot application schedules knowledge retrieval tasks
from GaussDB-Vector and code/text generation tasks with an LLM,
and then forms a chain-of-thought (CoT) to produce the code/text
results. The knowledge data in GaussDB-Vector consists of code

segments and documents and associated embeddings, and the total
number of tuples are more than 1 billion. The application also relies
on GaussDB-Vector to support frequent update for knowledge re-
freshing and correction. We observed that the peak throughput for
search queries can reach 5,000 QPS and the throughput for update
queries can reach over 3,000 QPS, and both the search and update
queries can finish within 100 milliseconds on average.
8 RELATEDWORKS
Vector similarity search has been studied for decades [14]. But the
rise of high-quality embedding models has led to a new focus on
large-scale high-dimensional vector search, as well as the develop-
ment of new DBMSs designed to support this type of search [31].
Vector Similarity Search. State-of-art search algorithms tend to be
based on IVF or graph indexes. IVF-based indexes like IVFADC [24]
and SPANN [17] learn an optimal partitioning over the vectors to
limit the scan to a small number of partitions most likely to contain
near neighbors, and they have been shown to be more storage
efficient compared to indexes like LSH [8, 23]. On the other hand,
error guarantees are known for randomization-based indexes [9].
Graph-based indexes like NSG [21], Vamana [32], and HNSW [28]
build a monotonic search network to support sub-linear time ANN
search using greedy depth-first traversal.
VectorDatabaseManagement Systems.Many systems and search
libraries such as PostgreSQL, SingleStore [15], ClickHouse[1], Redis[5],
and ElasticSearch offer vector search capability. There are also “na-
tive” systems such as Milvus [35], Weaviate[7], and Pinecone[4]
that are targeted specifically at vector datasets and workloads. For
traditional systems, the challenge is to reduce the system overhead
while adding vector search capabilities [39]. Many systems take
advantage of distributed search and hardware acceleration using
SIMD and GPUs. Zhang et al. propose to use relaxed monotonicity
for early stopping when processing hybrid search [38], but the la-
tency could be long when the selectivity of scalar condition is small.
In GaussDB-Vector, we enhance performance at the index level,
such as optimizing the storage structure and designing effective
buffering strategies. We also implement system-level techniques to
ensure high availability, scalability, and data freshness.
9 CONCLUSION
This paper presents GaussDB-Vector, a real-time persistent vector
database aimed at high performance, high availability, and high
scalability, while also offering high data freshness and hybrid scalar-
vector filtered search capability. GaussDB-Vector demonstrates
that vector search over disk-resident indexes can achieve low la-
tency for search and update queries using storage structures and
buffering strategies that are optimized for I/O in addition to com-
pute.With appropriate techniques, these structures can also support
efficient hybrid queries as well as distributed search that can scale
to dataset sizes in the billions of vectors, and techniques utilizing
new hardware can be used to further accelerate search.

ACKNOWLEDGMENTS
This paper was supported by National Key R&D Program of China
(2023YFB4503600), NSF of China (62525202, 62232009), Shenzhen
Project (CJGJZD20230724093403007), Zhongguancun Lab, Huawei,
and Beijing National Research Center for Information Science and
Technology (BNRist). Guoliang Li is the corresponding author.

REFERENCES
[1] http://clickhouse.com.
[2] http://elastic.co.
[3] http://faiss.ai.
[4] http://pinecone.io.
[5] http://redis.io.
[6] https://github.com/pgvector/pgvector.
[7] http://weaviate.io.
[8] A. Andoni, P. Indyk, T. Laarhoven, I. Razenshteyn, and L. Schmidt. Practical

and optimal lsh for angular distance. In Proceedings of the 28th International
Conference on Neural Information Processing Systems - Volume 1, NIPS’15, page
1225–1233, Cambridge, MA, USA, 2015. MIT Press.

[9] A. Andoni, P. Indyk, and I. Razenshteyn. Approximate nearest neighbor search
in high dimensions. In ICM, pages 3287–3318, 2018.

[10] M. Aumüller, E. Bernhardsson, and A. Faithfull. Ann-benchmarks: A bench-
marking tool for approximate nearest neighbor algorithms. Inf. Syst., 87(C), Jan.
2020.

[11] F. Aurenhammer. Voronoi diagrams—a survey of a fundamental geometric data
structure. ACM Comput. Surv., 23(3):345–405, Sept. 1991.

[12] F. Bang. GPTCache: An open-source semantic cache for LLM applications en-
abling faster answers and cost savings. In L. Tan, D. Milajevs, G. Chauhan,
J. Gwinnup, and E. Rippeth, editors, Proceedings of the 3rd Workshop for Natu-
ral Language Processing Open Source Software (NLP-OSS 2023), pages 212–218,
Singapore, Dec. 2023. Association for Computational Linguistics.

[13] O. Beaumont, A.-M. Kermarrec, L. Marchal, and E. Riviere. Voronet: A scalable
object network based on voronoi tessellations. In 2007 IEEE International Parallel
and Distributed Processing Symposium, pages 1–10, 2007.

[14] E. Chávez, G. Navarro, R. Baeza-Yates, and J. L. Marroquín. Searching in metric
spaces. ACM Comput. Surv., 33(3):273–321, 2001.

[15] C. Chen, C. Jin, Y. Zhang, S. Podolsky, C. Wu, S.-P. Wang, E. Hanson, Z. Sun,
R. Walzer, and J. Wang. SingleStore-V: An integrated vector database system in
SingleStore. Proc. VLDB Endow., 17(12):3772–3785, 2024.

[16] L. Chen, M. Zaharia, and J. Zou. Frugalgpt: How to use large language models
while reducing cost and improving performance. arXiv preprint arXiv:2305.05176,
2023.

[17] Q. Chen, B. Zhao, H. Wang, M. Li, C. Liu, Z. Li, M. Yang, J. Wang, M. Yang, and
J. Wang. SPANN: Highly-efficient billion-scale approximate nearest neighbor
search. In NeurIPS 2021, 2021.

[18] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive hashing
scheme based on p-stable distributions. In Proceedings of the Twentieth Annual
Symposium on Computational Geometry, SCG ’04, page 253–262, New York, NY,
USA, 2004. Association for Computing Machinery.

[19] M. Douze, A. Guzhva, C. Deng, J. Johnson, G. Szilvasy, P.-E. Mazaré, M. Lomeli,
L. Hosseini, and H. Jégou. The faiss library. 2024.

[20] J. Fan, Z. Pan, L. Wang, and Y. Wang. Codebook-softened product quantiza-
tion for high accuracy approximate nearest neighbor search. Neurocomput.,
507(C):107–116, Oct. 2022.

[21] C. Fu, C. Xiang, C. Wang, and D. Cai. Fast approximate nearest neighbor search
with the navigating spreading-out graph. Proc. VLDB Endow., 12(5):461–474,
2019.

[22] S. Gollapudi, N. Karia, V. Sivashankar, R. Krishnaswamy, N. Begwani, S. Raz,
Y. Lin, Y. Zhang, N. Mahapatro, P. Srinivasan, A. Singh, and H. V. Simhadri.
Filtered-diskann: Graph algorithms for approximate nearest neighbor search
with filters. In Proceedings of the ACM Web Conference 2023, WWW ’23, page
3406–3416, New York, NY, USA, 2023. Association for Computing Machinery.

[23] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the
curse of dimensionality. In Proceedings of the Thirtieth Annual ACM Symposium
on Theory of Computing, STOC ’98, page 604–613, New York, NY, USA, 1998.
Association for Computing Machinery.

[24] H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest neighbor
search. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(1):117–
128, 2011.

[25] Y. Kalantidis and Y. Avrithis. Locally optimized product quantization for approx-
imate nearest neighbor search. In 2014 IEEE Conference on Computer Vision and
Pattern Recognition, pages 2329–2336, 2014.

[26] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler,
M. Lewis, W.-t. Yih, T. Rocktäschel, S. Riedel, and D. Kiela. Retrieval-augmented
generation for knowledge-intensive nlp tasks. In Proceedings of the 34th Interna-
tional Conference on Neural Information Processing Systems, NIPS ’20, Red Hook,
NY, USA, 2020. Curran Associates Inc.

[27] D. G. Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision, 60(2), 2004.

[28] Y. Malkov and D. A. Yashunin. Efficient and robust approximate nearest neighbor
search using hierarchical navigable small world graphs. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 42(4):824–836, 2020.

[29] A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic represen-
tation of the spatial envelope. International Journal of Computer Vision, 42(3),
2001.

[30] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The log-structured merge-tree
(LSM-tree). Acta Inform., 33:351–385, 1996.

[31] J. J. Pan, J. Wang, and G. Li. Survey of vector database management systems.
VLDB Journal, 2024.

[32] S. J. Subramanya, Devvrit, R. Kadekodi, R. Krishnaswamy, and H. V. Simhadri.
DiskANN: Fast accurate billion-point nearest neighbor search on a single node.
In NeurIPS 2019, November 2019.

[33] J. Sun, G. Li, and N. Tang. Learned cardinality estimation for similarity queries. In
Proceedings of the 2021 International Conference on Management of Data, SIGMOD
’21, page 1745–1757, New York, NY, USA, 2021. Association for Computing
Machinery.

[34] H. Wang, W. Wu, C. Luo, A. Bian, C. Meng, Y. Wu, and J. Sun. Boosting Accuracy
and Efficiency for Vector Retrieval with Local Scaling Graph . In 2025 IEEE
41st International Conference on Data Engineering (ICDE), pages 336–348, Los
Alamitos, CA, USA, May 2025. IEEE Computer Society.

[35] J. Wang, X. Yi, R. Guo, H. Jin, P. Xu, S. Li, X. Wang, X. Guo, C. Li, X. Xu, K. Yu,
Y. Yuan, Y. Zou, J. Long, Y. Cai, Z. Li, Z. Zhang, Y. Mo, J. Gu, R. Jiang, Y. Wei, and
C. Xie. Milvus: A purpose-built vector data management system. In SIGMOD,
pages 2614–2627, 2021.

[36] M. Wang, X. Xu, Q. Yue, and Y. Wang. A comprehensive survey and experimental
comparison of graph-based approximate nearest neighbor search. Proc. VLDB
Endow., 14(11):1964–1978, July 2021.

[37] W. Yang, T. Li, G. Fang, and H. Wei. PASE: PostgreSQL ultra-high-dimensional
approximate nearest neighbor search extension. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’20, page
2241–2253, New York, NY, USA, 2020. Association for Computing Machinery.

[38] Q. Zhang, S. Xu, Q. Chen, G. Sui, J. Xie, Z. Cai, Y. Chen, Y. He, Y. Yang, F. Yang,
M. Yang, and L. Zhou. VBASE: Unifying online vector similarity search and
relational queries via relaxed monotonicity. In 17th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 23), pages 377–395, Boston,
MA, July 2023. USENIX Association.

[39] Y. Zhang, S. Liu, and J. Wang. Are there fundamental limitations in supporting
vector data management in relational databases? A case study of PostgreSQL. In
ICDE, 2024.

	Abstract
	1 Introduction
	2 System Overview
	2.1 Architecture
	2.2 SQL Interface

	3 Vector Indexing
	3.1 IVF-based Index
	3.2 Graph-based Index

	4 Scalar-Vector Hybrid Queries
	4.1 Hybrid Index Structure
	4.2 Hybrid Search
	4.3 Hybrid Data Update

	5 Distributed Vector Search
	6 Hardware Acceleration
	7 Experiments
	7.1 Experimental Settings
	7.2 Vector Query Performance
	7.3 Hybrid Search
	7.4 Scalability
	7.5 Update Throughput
	7.6 NPU Acceleration
	7.7 Real Use Case: Coding Copilot

	8 Related Works
	9 Conclusion
	References

